
NWC TP 7081

AD-A229 272

Probing Behavior In Certain Optimal
Perturbation Control Laws

by
W. W. Wiliman

Research Department

JULY 1990

NAVAL WEAPONS CENTER
CHINA LAKE, CA 93555-6001

0M WOTIC_
S E LECTE

Approved for public release; distribution unlimited

12. ii 8



8*

Naval Weapons Center

FOREWORD

This report documents an extension of asymptotic approximations of
optimal control laws to a wider class of cases than has been analyzed
previously.

The work described in this report was performed at the Naval Weapons
Center from June 1989 to March 1990 and supported by Independent Research
funds.

Approved by Under the authority of
R. L. DERR, Head D. W. COOK
Research Department Capt., U. S. Navy
26 June 1990 Commander

Released for publication by
W. B. PORTER
Technical Director

NWC Technical Publication 7081

Published by ...................................................... Technical Information Department
Collation ................................................................................................. Cover, 14 leaves
First printing ....................................................................................................... 75 copies



REPOT DCUMNTATON AGEForm Approved
REPRT OCMENATON AG OMB No. 0704-0188

Pubic tugatin burden for this mbcftbn at mfcnrtin is aotrtd to average I hou r W eugene. wickldg te UMm for wvng VIaJOMU Smcnhg ezitiri da bouo. gatherng and
rmatauimguthe dna nede. and ownri~t and reva"in the WOMM~u of informwon. Send nnrn regaaet aim burden emmra or mny other no at ft ectm of Wrdonuttn. inctaouiq
"ugestiona for rednmgr ths burden, to Wahigton Headouiners Servos. Diueowa for Infonown Operators and Recoria 1215 Je~eumin Oar. Hiolua. Su". 1204. Arlingjton. VA
22024=w4 a to the 011wof Managenen and BudgeS. P~ar kReduajonPimct(0704-0188). Wnhrngt. DC 20503

I. AENC USEONL (Ler. ~n~42. EPOR DAE 3 REPORT TYPE AND CATES COVERED
1.~ ~ ~~ Ju ly 1 9 90LY( ea e b~ 2 EP R D T F in a l , J u n e 8 9 to M a rc h 9 0

4L TITLE AND SIJBTTLE S.FUNDING NUMBERS

Probing Behavior in Certain Optimal Perturbation PE 61152N
Control Laws PR RROONW
6AUTHOR(S) TA RROONW

WU 13807005
Warren W. Willman

7. PERFORMNG ORGANIZATION NAMWS) AND ADDRESS(ES) S. PERFORMAING ORGANMZAT1ON
REPORT NUMBER

Naval Weapons Center
China Lake, CA 93555-6001 NWC TP 7081

S. SPO#4SORNGiMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING(MONITORING
AGENCY REPORT NUMER

Office of Naval Research Research
Arlington, VA 22217

11. SUPPLEMENTARY NOTES

12&. DISTRIBU71OWAVAILABIUITY STATEMENT ita. DSSTRIBUTMO CODE

A statement; public release; distribution unlimited.

13. ABSTRACT (Maxenum 2W worcs)

(U) Asymptotic approximations of optimal control laws are established for a class
of dynamic systems whose state components are either slowly varying (i.e.,
parameters) or can be tracked arbitrarily well by making the controller's
measurements sufficiently accurate. These control optimization problems have the
form assumed by higher-order descriptions of noised-induced perturbations from
optimal nominal behavior in a more general type of control problem. When the
measurement noise is small, bilinear measurement terms in the parameter and control
variables can give rise to a rapidly fluctuating "probing" term in the optimal control.
This term is the output of a high-frequency linear system driven by a product of the
parameter covariance matrix and a Kalman-filter innovation vector. These results are
derived with an approximate dynamic programming analysis where the neglected
error terms are assumed to be sufficiently well behaved that all quantities that appear
to be negligible actually are so in some appropriate sense; i.e., the results are only
formal.

K4 SUBJIECT TERMS I&. NUMEWOF PAGES
Adap tive Control, Perturbation Control, Optimal Control, Nonlinear 25
Control, Adaptive Autopilot, Stochastic Control, AsymptouicI&PCEOD
Approximation. Missile Autopilot. 1.PUECD

17. SECURITY CLASSIFICATION IS. SECURITY CLASSIRiCATION iSt SECURITY CLASSIFICATION 21L LIMTATION OF ABSTRACT
OF REPORT OF fliS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev- 2-89)

29&102



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Standard Form 298 Back (Rev. 2-89) SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED



NWC TP 7081

CONTENTS

Introduction and Summ ary ...................................................................................... 3

Problem Statem ent .................................................................................................. 4

Heuristic M otivation for Restrictions ...................................................................... 7

State Estim ation ............................................................................................................... 9
Approxim ate Estim ator Behavior in a Restricted Context ................................... 10

Control Optim ization ............................................................................................... 13

Applications in a M ore General Context ............................................................... 16

Appendix:

Control Law Details ......................................................................................... 23

References ..................................................................................................................... 25

-~)A~fl-q

<7>o



NWC TP 7081

INTRODUCTION AND SUMMARY

Asymptotic approximations of optimal control laws are determined for a
class of multivariate dynamic systems whose state components are either
slowly varying (i.e., parameters) or can be tracked arbitrarily well by making
the controller's state measurements sufficiently accurate. This control
optimization problem would have the standard linear-quadratic-Gaussian form
except for small terms in the measurements, that are bilinear in the control
and parameter variables, and with respect to which the control law
approximations are asymptotic. Also, the measurement noise is small in a
certain relative sense, which gives this control problem special properties.
The bilinear measurement terms give rise to a rapidly fluctuating term in the
optimal control law-a linear function of the state of a multivariate linear
system driven by a Kalmon-filter innovation variable.

This rapidly fluctuating control component is essentially zero-mean,
even conditioned on all but very recent data, and so has little current effect on
the system dynamics. It is apparently an example of the probing phenomenon
in optimal control laws identified by Feldbaum (Reference 1), which is current
control effort expended to reduce uncertainty in the state variable (including
the parameters here) in order to improve system performance in the future.
A voluminous amount of literature exists on this general subject. In work
related to the particular topic here, specialized methods have been ut.ed to
obtain sharper results for a particular case related to homing missile guidance
(Reference 2). Speyer and Hahn have derived similar asymptotic
approximations of optimal control laws for systems with bilinear terms in the
dynamics (Reference 3), but the "parameters" there are not static or slowly
varying and the measurement noise is not small.

The results here are obtained from an approximate dynamic
programming analysis in which the state variable includes the departures of
certain Kalman-filter covariance quantities from their local averages, and the
analysis uses the fact that these departures are small because of the small
measurement noise. It is then shown how these results apply to other cases
that arise from analyses of noise-induced departures from nominal behavior
in a more general class of optimal control problems. Typically, these other
cases have (relatively small) quadratic terms in the system dynamics and state
measurements, and cubic terms in the performance criterion. The analysis
here is not at a mathematically rigorous level, although the constructions
developed might be useful in a more ambitious treatment of that sort.
Expressions denoting ordinary differential equations with white noise terms
should be understood as the formally corresponding stochastic differential
equations in the Ito sense (Reference 4 and 5) if a rigorous interpretation is
desired.
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Unless otherwise stated, lower case letters denote (real finite-
dimensional) column vectors and scalars. Matrices are denoted by capital
Roman letters. ATdenotes the transpose of a matrix A, and tr(A) its trace if A is
square. It will also be convenient to make use of three-way matrices, which
are always denoted by capital Greek letters here. For continuity of notation,
the following definitions are adopted for such a three-way matrix F, with
vector x and matrices A and B of compatible dimensions and with repeated
indices denoting summation:

(rx)ij = xijcXo (matrix)

(AxT)ijk = Aijxk (three-way matrix)

(AP)ijk = Aiccfjk (three-way matrix)

(PB)ijk = rijoBok (three-way matrix)

(r )ijk = r'jki and (rT)ijk = rkji (three-way matrix)

[tr(F)i =rFj, (column vector, when applicable).

With these definitions, the expression FAFBDxx T is fully associative. Many
other consequences are obvious. Some useful but less obvious properties are

tT

tr(F x) = [tr(F)ITx

A tr(r) = tr[(Ar)]

tr(AF) = tr(rA)

(rB)' = BTF' and (Ar)" = F"AT

(AIB)T = BTGTA
T

(Px)AT = (Ar)x and (r x)B = (rB) x.

PROBLEM STATEMENT

The more limited case actually analyzed here is that of a multivariate
system with dynamics of the form

x= Fx+Gu- 4w (1)

0= h w2, (2)
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a controller of which receives a vector measurement of the form

z= Hx + h H tr(F OUT) + v (3)

and selects the control vector u at each time instant t _> 0 (with the convention
that Equation 3 is evaluated slightly before it is used to change u). The initial
state parttions x(0) and 0(0) are statistically independent a priori with Normal
(i0, P0 ) and Normal (0, L0 ) distributions respectively. Zero-mean Gaussian

white noise processes w 1, w2 , and v are independent with covariance

parameters Q, D and R/m 2 , respectively. Positive scalars m and h and are
considered parameters of the problem, with 1- m <,l/h and usually further
restrictions. The objective is to find a control law that minimizes a scalar
performance criterion of the form

1 4xf fxf+J (xTAx + uTBu + 2xTZu)dt (4)

where ' denotes prior expectation and tf is some specified terminal time. As

usual, a control law is defined as a decision rule that, for each t in [0, tf),

specifies the current control u(t) as a function of the current measurement
history f(z(s), s) : 0 < s < t}. A, B, and Sf are symmetric with A, Sf, P0, L0 , Q, and D
positive-semidefinite and B and R positive-definite. In the context of
sufficiently small h, the components of all the matrices as well as R-1 and B-1

are of order unity. These matrices may be time-varying but only with time-
derivatives that are also of order unity in this sensc.

Also, some further structural properties are assumed for the limiting
form of this problem when h = 0 (in which case 0 is irrelevant). First, it is
assumed that (F, G) is stabilizable and (F, H) is observable at each time instant.
To specify the other properties and also for future reference, it is convenient
to define V(t) (a normalized covariance matrix of x for this limiting case) and a
corresponding transition matrix T by

V = FV + VFT + m (Q -VHTRIHV); V(0) = mP 0  (5)

and

FT (s,t) = [F- mVHTR- HI (s) T(s,t); T(t,t) = 1. (6)as

Other assumptions are made: with m considered as a problem-formulation
parameter, there exists a positive T(m) (a "settling time") such that
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im T=0and lim m_>1,
M-4* m-4o

and for all sufficiently large m and t - 'r,

(1) V is of order mt

(2) T(s,t) is of order mre-(St)/ ft

for s ! t.

(3) T(s,t)VH T is of order e- J
(4) If U and X are symmetric matrix time functions of order unity with

X positive-semidefinite and U and X also of order unity, and if K and
q are the matrix time function and vector random process defined by

T I T Ti1-K = K(F-mVH R_ H) + (F -mH R- HV)K + U; K(tf) = 0

and

*~ TI
q = (F-mVH R H)q + mw 3 ; q(0) = 0,

where

w 3 is zero-mean Gaussian white noise with covariance
parameter X, then

(a) TT(s,t)KVH T is of order m 2 for s > t

and

(b) HVKq is of order m2t 512

(except perhaps for a negligibly improbable set of realizations of q).

Because T(s,t) decays rapidly with increasing (s - t) > 0, the variations of V(s),
H(s), and K(s) are negligible until T is essentially zero; thus, (3) and (4a) will
also hold when V, H, and K are evaluated at s instead of t. Also, since V/m is the
error covariance matrix for the Kalman-filter estimate of x, these assumptions
imply that the entire vector x can be tracked arbitrarily closely if the
measurement noise can be made small enough (by (1), (2), and r-*O as m-oo).

Finding an optimal control law exactly is very difficult for this case, and
we seek only an approximation that is asymptotically accurate to order

hi2m2 5/2 for small h and h2m6 1/2 1 (except perhaps for a set of
measurement histories of negligible prok-ability). However, since T can be as
large as m 1/n when x is n-dimensional (see next section), control terms of this
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magnitude can be large compared to h2 under these conditions if n > 2, which
is necessary for their significance in the type of applications described in the
last section. The treatment of the problem here is further limited to finding
the control law corresponding to a cost-to-go function that has the formal
appearance of satisfying the Bellman equation for Equations 1 through 4 to

2 2 5/2order h m T / . This control law would be the desired approximation if the
equations involved in the analysis are well-posed-and the formally negligible
terms are indeed so in some appropriate sense-but a rigorous verification of
these conditions is beyond the scope of this report. In this sense, the result
obtained below is only a plausible candidate for the control-law approximation
being sought.

HEURISTIC MOTIVATION FOR RESTRICTIONS

Although not readily apparent, the extra restrictions (1) through (4) in
the problem formulation are actually motivated by the prototypical case of an

n-dimensional system with xi = xi+ l , i = 1..n - 1, xn = order-unity noise w, and

scalar measurement of x1 only. One way of estimating the ,.urrent value of
this state vector for m >> I (i.e., small measurement noise) is to partition a short
preceding time interval, say of length r, into n equal subintervals, estimate
the value of x1 at the midpoint of each subinterval as the average value of z

observed during it, and then estimate xil(= x(i)), i = 1, ..., n - 1 by taking an ith-
order difference of these x l -estimates and dividing by the appropriate

multiple of Ti. By standard results, the error variance in the x1 estimates in the

absence of the process noise w is m-2T-1 and that of the xi-estimate is of order

m-2i The error variance in the estimate of xi would therefore decrease
with increasing r until the variance of the change in xi produced by the
process noise over that interval (which increases with r) is of the same order

of magnitude. For each i, this happens when r is of order m- / n, because xi is
the (n - i + 1)st integral of w, whose variance over an interval of length 'r can
be obtained by standard methods and is of order r2 (ni) . For any given n,
m -1/n- 0 as m-4 c, so an optimal r for this kind of estimation would indeed be
short and have this order of magnitude for sufficiently large m (i.e., small
enough measurement noise). The corresponding error variance in the
estimate of xi would then be of order rn+l-2i/m. Since the (n x n) covariance
matrix P for these errors must be positive-semidefinite, component Pi would

be of order n+l-i'J/m.

The basic premise here is that the Kalman filter for such a system should
behave in the same way to an order-of-magnitude approximation (this has
been verified for some special cases). In the notation of the preceding section
for such a system, the properties assumed there can then be established by
concluding in turn that:

7
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(1) V is of order t 1 -'J/m; bccause V = mP

(2) (VH T)i is of order 'i/m; because H = [1, 0 ..., 0] in this case

o f order rl-' for positive t - s of order -t
(3) Tij(t,s) i ( negligible for 'r - s o t

in order for the transition-matrix solution (e.g., Reference 6) of the Kalman
filter's differential equation for the conditional mean to operate (as a
convolution) on the measurement history in the manner described above.

(4) Kij is of order m2tl+i+J; from the transition-matrix solution of K,

(3), and the fact that m is of order r-n in this case.

(5) var(qi) is of order m2'3-2i; from (3) in the transition-matrix solution
of the usual differential equation for the covariance matrix of q,

and the fact that r e I and m is of order t-n .

(6) qi is of order mxr3/2 -i; by (5), the Chebychev inequality, and the fact
that q is zero-mean.

(7) V is of order mt; from (1) and the fact that t < land m is of order T-n.

(8) T(t,s) is of order mre(s-t)/ for t > s; by (3) and the fact that r < I and

m is of order t-n .

(9) T(t,s)VH T is of order e(St)/'; from (2), (3), and the fact that T 0 1 and

m is of order r-n.

(10) TT(t,s)KVH T is of order m'2 ; from (2) through (4) and the fact that r <, I

and m is of order '-n.

(11) HVKq is of order m2 5 /2 ; from (2), (4), (6), and the fact that m is of

order t-n .

In this case, t would be a meaningful "settling time" for this Kalman filter.
Although x can be tracked arbitrarily well with sufficiently accurate
measurements (of x, alone in this instance), an interesting point in this

connection is that if Xk were also unit-intensity process noise for some k < n.

then the Kalman filter's effective "data window" for estimating xk+ 1.... xn, and

the variance of the estimation errors for these state components, would
remain of order unity as m-o. The limiting factor in estimating these
components would then be the ratio of the process noise intensities to each

8
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other, and the entire state vector could no longer be tracked arbitrarily well
just by reducing the measurement noise even tLough the system would still be
observable.

Finally, it is reasonable to hope that the properties assumea in the
problem formulation would also be characteristic of a considerably wider class
of linear observation systems whose state can be tracl.ed arbitrarily %ell with
small enough measurement noise. The reasoning is that the tracking
accuracy in such cases would often be limited by some similarly configured
subset of the state components, one of which is driven by process noise and is
a higher derivative of another that is measured directly.

STATE ESTIMATION

If the conditional mean and covariance matrix for the current composite
state (x,O), given the currently available measurements, are partitioned in the
obvious way as

[ ] and [PE],

then it follows from standard Kalman filtering results (Reference 7) that

f=Fi + Gu + m2 [p + h(FTET)'u]HTR-(z - i); i(O) = i 0  (7)

= m2 [E T + h(FTTL)'uIH TRl(z - i); 6(0) = 0 (8)

P = FP + PFy + Q - m2[p + h(rT E T)'u]H T R-H[P + h(Er)'u];P(0) =PO (9)

E = FE - m2[p + h(FTET)'u]HT R H[E + h(LF)u]; E(O) = 0 (10)

L= h2D -m2[E T + h(FTL')u]HTR-H[E + h(LF) ul; L() L0 , (11)

where

i=H[i + h tr(r"6u T). (12)

It will be convenient to define the quantities

M = 2[E + h(LF)'u] (13)
h

and

9
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(mP - V)/h2 + muT FLFT u, (14)

where V(t is as defined by Equation 5, and the normalized Kalman-filter
innovation variab!e

m(z - Z). (15)

Differentiating Equations 13 and 14 and substituting from Equations 7 through
12 then show eventually that

, =F, + Gu + IV + h2 N+h 2 (F T M T )uH T R- , (16)

*T I 'TM = (F - mVt R- H)M + m(LF)'u+ mIL(F- FF

+ h2 (D- M T R-IHM)F]'u -mh 2IN + (FT M T)'uH TR HM, (17)

N =(F -mVI TR-tH)N + N(F T - mHT R-HV) - m(VHTR HFTMT

+MFHTR-IHV)'u - mh2 [N + (FT M )u]HTR-IH[N + (MF)'uI

+ mIF(u TF LT' u) + (uTE LFT u)FT- d(uTF LFT u), (18)

a ndd
and

L = h2(D - M H R-IHM). (19)

L clearly remains positive-scmidefinite and of order unity over time intervals

that are short compared to l/h 2. Also, can be treated as a zero-mean Gaussian
white noise process with covariance parameter R(t) in determining the
statistical behavior of the above Kalman-filter variables (Reference 4).

Controls with Wiener-process components will be used below; they are
not actually differentiable and so should really be interpreted as smooth
approximations of the Wiener process used formally. Such approximations
would be unavoidable in practice anyway and presumably could be made in a
way that amounts "- local averaging over a short enough time interval that
the difference w( .id be negligible to the order of accuracy retained in the
analysis.

APPROXIMATE ESTIMATOR BEIIAVIOR IN A RESTRICTED CONTEXT

If h = 0, it is a standard result that the optimal control law is

u = -Wx, (20)
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where W = B-I(ZT + GTS) with S(t) the solution of

-S = SF + FTS + A -(SG + Z)B-I(Z 7 + G TS); S(tf) = Sf. (21)

Since we are only concerned with small h hcre, we consider control laws of
the form

u = -Wx +'9, (22)

under the further restriction that h2 m 6 11/2 4 1, such that TI is small compared
to unity in that context. With respect to sufficiently small h, it is clear that the
assumed properties of the matrices defining the problem, including the

stabilizability of (F, G) and the observability of (F, H), imply that W and W can

be considered of order unity and that x and i are also of order unity by this
standard (except perhaps for a set of realizations of negligible probabllity)
when the control law of Equation 20 is used and h = 0.

Differentiating Equation 22 and using Equation 16 shows that

u = -(W + WF + WGW)i -WCq -W[V + h2N + h2(FTMT)'

(T - Wi)]HTR'I4 (23)

for such a control law if the perturbation control Tj is small and smooth

enough that Tj is negligible in the following (which it will be for the optimal
control law approximation derived below). We now assume this to be the case
and further that M and N are of respective orders m2 t3/2 and m3 5/2 with the
autocovariance functions of the M-components being negligible for time
differences that are large compared to r. Then it follows fron Equation 19 that
order-unity changes in the L-components behave basically as sums of
l/(h2m 4 4) independent random increments, each with a variance of order

4 8 8244h im t . Hence the variance of such a sum is of order h2m 4 t4 , which is small
compared to unity under the restrictions of interest here because

I , h2m 6 I 1/2 = (h2n, 4t 4 )(m'r) 3/2,1"M. This means by the Chebychev inequality

that the difference between L and its prior expected value L(t) is small
compared to unity. In consequence, the substitution from Equations 22 and 23

for u and u in Equations 16 through 18 gives

i = (F - GW)i + VHTRI ', (24)

, F VTR1M I ~ ) T -1
M = (F - mVl R H)M- m(LflWVH R _, (25)

and

11
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N= (F - mVHT R IH)N + N(F - MTR- HV) +

m(VHTR-IHI'TMT + MFHTR IHV)'Wx, (26)

except for higher-order terms, when M and N are of the assumed orders of
2 6 11/2magnitude and h m t <<.

Since R and R - 1 are both of order unity and since Equation 24 is the

equation for x when h = 0, the components of the product VHT must be of order

unity because x is of order unity then.

Let q denote an arbitrary column of M and k its index. Then from
Equation 25,

q = (F - mVHT R H)q - mUWVHTR-I ; q() = 0, (27)

where U is the matrix such that Uij = (Lr)kji. Let C(t) denote the prior
covariance matrix of q(t). It follows from Equation 27 and standard results that

C= (F - mVHT R H)C + C(FT - mHT R-HV) + m2 UWVH T R-1HVWTuT;

C(0) = 0

and that

t

C(t) = m2J0T(t,s)[UWVHTR1HVWTu](s)TT(ts)ds.

From the properties assumed for the transition matrix T and the fact that VHT

is of order unity, C is of order m IT3 . By the Chebychev inequality, therefore,
the components of any column of M and, hence, any component of M itself
would be of order m2 x3 /2 in this approximation, except perhaps for a set of
realizations of negligible probability.

Furthermore if C(t 2 ,t I ) is used to denote the prior expectation of

q(t )q T(t 2 ) for t 2 > t 1  , it is a standard result that

)(t 2 , t) T I
= [F - mVH R- HI(t 2 ) C(t 2 ,tl); C(t 1,t) = C(tl).

and, hence, that C(t 2 ,t 1 ) = T(t 2 ,tl)C(ti). Since T(t 2,t 1) decays exponentially as

(t2 - t)/T by assumption, C(t 2 ,t 1) is indeed negligible for t2 - ti > .

12
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Now define X(t) = T(s,t)M(t) for t < s, so

a T(s,t)
X = t M(t) + T(s,t)M(t).

From standard results for transition matrix derivatives and the above

approximation for M,

-X = mT(s,t)(LF)'WVH TR ; X(s) = M(s)

except for higher-order terms. Integration in reverse time from t = s gives
X(t) - M(t) as a zero-mean random variable with component variances of order

m4"T3 because of the order of magnitude assumed for T. Since M(t) itself is of
2 3/2order m t3 , so is T(s,t)M(t) for t < s by the Chebychev inequality.

With routine matrix manipulation, the solution to the approximate

equation for N can be expressed as

t

N(t) = m J tT(t,s)[!QT(s)MT(s) + M(s)Cj(s)]TT(t,s)}'W(s)(s)ds,

where Qi denotes FHT R -1HV. Because of the preceding order-of-magnitude

results, this shows that N is of order m3 r5/2 .

Under the restrictions specified above, the Kalman filter equations

(expressed in terms of V, M, N, L, x, and 0) are therefore formally consistent
with the orders of magnitude and correlation-function behavior assumed for
M and N, and verify them under the assumption that the full equation system
is well posed in some approximate sense, and under the further assumption

that ri would be negligible in the preceding derivations. As further

consequences, moreover, VH T is of order unity, T(s,t)M(t) is of order m2 t 3/ 2 for

s > t, and the difference between L(t) and its prior expected value L(t) is small
compared to unity under these conditions.

CONTROL OPTIMIZATION

For S(t) and u as specified by Equations 21 and 22, the problem here
reduces to that of finding an optimal control law for the perturbation control rl
to which we seek only an asymptotic approximation. An optimal expected cost-
to-go function can be defined consistently in terms of time and the conditional
distribution of x and 0 (Reference 8). The Principle of Optimality of dynamic
programming can then be applied in the usual way (Reference 9) to derive a
Bellman equation for this function, the solution of which equation specifies
the optimal control law for T1.

13
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Following this approach, we consider a possible cost-to-go function of the
form

I -T - 2-T
J = -x Sx + 7- tr[(S + Y)N] + h x tr(A M) + f(t), (28)

where S(t) is as defined by Equation 21, and is hence symmetric and of order
unity, and where Y and A are functions of t only, with Y symmetric and of

2 3 3order m2 T , and with A of order mT Retaining accuracy only to orders
h 2m 2 t 5 / 2 and h2 m 2 /2 y (where y denotes any product of T components) and
using Equations 16 through 18 (with Equations 22 and 23 substituted for u and

u) to evaluate the required conditional expected increments (and products

thereof) in i, M and N result in a Bellman equation of the form

_.i = min p(t, i, M, N, TI)
a T(29)

J(tf, .. = -TSfi + tr[S(Vf + h2N)l/m)

where p is a certain rather lengthy expression, if h2 m 6' 1 11 2  1 (< m6 5"2 . This
derivation also uses the fact that L can be replaced by its prior expected value

L in Equations 17 and 18 in this context. The minimizing il in Equation 29
occurs when the TI-derivative of the expression p is zero, which is easily shown
to be when

r = h2Bltr{[rHTR1 HVY - (AG) IM). (30)

Substituting from Equation 30 for Ti in Equation 29 and collecting terms in like

powers of the a priori random variables i, M, and N then show that J of
2 2 5/2Equation 28 formally satisfies the Bellman equation to order h m t 5 , for

h 2m6" 1 1/2  o I m6 t 5 / 2 and S(t) the solution of Equation 21, if

-Y = Y(F - mVHTRtH) + (FT - mHTR-IHV)Y +
(SG + Z)B-I (ZT + GTs); Y(tf) =-- 0 (31)

-l\A[F - GBI(ZT + GTS)I + (FT - mHTR HV)A +
YVHTRHr'B-(ZT + GTs); A(tf) = 0 (32)

tf

f(t) = Jg(s)ds,
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if the resulting values of Y and A have the assumed orders of magnitude and if
the corresponding perturbation control of Equation 30 is such that the

contributions of T would be insignificant in the computation of N and M.

Now by standard properties of transition matrices,

ftfT T

Y(t) = ft TT(x, t)[SG + Z)B- I(ZT + G TS)](ai) T(a, t) da.

Since T(ex, t) decays to zero by assumption over an a-interval of order t and has
maximum component magnitudes of order mT, this integration is effectively

2 3over an interval of order -r and Y is therefore of order m 2t 3 as assumed. Also,
for the transition matrix T 2 defined by

aT2 (a,t)1Ta t = [F - (SG + Z)B- 1GT(a) T2 (a, t); T2 (t, t) = I,,ax

it is straightforward to verify that

tf
A(t) =J TT(a, t)[YVHTRIH'BZ(zT + GT S)](a) T2 (a, t) da.

Since T 2 (a, t) is order unity and this integration is also effectively over an

interval of order T, A is of order mr t, as assumed, by the unity order of
magnitude postulated for matrix products of which TTYVHT is an example.

Finally, the time derivative il of the derived optimal perturbation control will,

as a result, be dominated by terms of orders h2 m 3t 3M, h2m 4 M, h 2m2"3M, and

h2 m 3 tM. Such terms, as was assumed, would make no significant contribution

as a part of u in the differential Equations 17 and 18 for M and N if h2 m 6t «1 1/2  1.

To summarize, it has been shown at least formally that the optimal control
law is

u = -BI(ZT + GTS)i + T,

to order h2 m 2T5/2 if h2 m611/2 MT < I < m65/2 , where S(t) is given by Equation 21,
71 is given by Equation 30 with V(t), Y(t), and A(t) as given by Equations 5, 31,

and 32, and where i and M are generated from the incoming measurements z
by the Kalman filter of Equations 7 through 12 and

M = (F - mVHTRIH)M - m2 (LF)B-I(Z T + S)VH TR- I(z - z);
M(0) = 0. (33)

15
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The last equation is a sufficiently accurate truncation of Equation 17 with

substitution from Equations 22 and 23 for u and u.

APPLICATIONS IN A MORE GENERAL CONTEXT

The preceding results also have applications to a wider class of optimal

control problems, with multivariate dynamics of the general form

x =f(x, 0 U, t' V) (motion-state)

0 0 (parameters)

i x(t), 0 Normal and independent a priori with F (0) 0,

state measurements of the form

z = g(x, 0, u, t' v)

w, v independent white noise processes,

and performance criterion (to be minimized) of the form

J = -[F4(xf, 0) + f X (x, 0, u, t)dt],

where to and tf are specified a priori. Corresponding to such a problem, there

is the nominal control problem (easier to solve because it is deterministic) of

finding u(t) to minimize

tf

= (xf, tf) + Jt X [x(t), 0, u(t), t]dt

for

x = f(x, 0, u, t, 0); x(t 0 ) = prior mean of x(t 0 ).

Also, a nominal measurement history z(t) can be defined as

z(t) = g[x(t), 0, u(t), t, 01

when the minimizing u(t) is used.

16
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Once x(t), u(t), and z(t) have been found for the solution of the nominal

control problem, the original problem can be solved by adding to u(t) the

perturbation control law for u- u (or 6u), which minimizes J- J (or 6J). Taylor-
series expansions of f, g, W , and X can typically be used to express the
dynamics, measurements, and criterion of this optimal perturbation control
problem in terms of the perturbation variables 8x, bu, 6z, 0, w, and v (and, of

course, the predetermined time functions x, u, and z). Treating the

perturbation variables as small and truncating the Taylor-series expansions at
the lowest nontrivial order of accuracy lead to a problem of the familiar
linear-quadratic-Gaussian form for the optimal perturbation control law. The

solution to this problem is well known and can be added to u as a first
approximation of the optimal control law for the original problem.

If the Taylor-series approximations are carried out to one higher order of
asymptotic accuracy in this perturbation control problem, the effect is
typically to introduce quadratic terms in the dynamics and measurements, and
cubic terms in the criterion. Such a problem can often be resealed so that the
perturbation variables are of order unity and the coefficients of the added
higher-degree terms become the quantities that are relatively small, say of
order h. For cases formulated so that the parameter vector 0 does not enter the
measurement equation in the linear-quadratic-Gaussian approximation,
possibly by adjoining the observable subspace of the original "paramettrs" to
x, and with dim(x) _> dim(z), this higher-order problem typically can be
transformed further to one with dynamics, measurements, and criterion of the
form

- -T Ty =Fy + Gu + tr(Ayy T ) + 2tr(O yu ) + GWN(Q), (34)

T Tz= Hy + tr(Oyy ) + 2H tr(f2yu T ) + GWN(R), (35)

and

t

I T T T T T T

j= 4,(1T yf S+ 71 yT tr(l-lfyfyTf) + ft0 [cy Y+ yTu

+ l(yT Ay + uT Bu) + yT tr(Quu T ) + uT tr(.yyT)
2

+ _Y tr(yy T ) +u tr(EuuT )]dt),3 3 (36)

where c and the three-way matrices are of order h and B- and all other
quantities are of order unity, where u, z, and J are now used in place of 5u, 8z,
and 8J, where "GWN" denotes Gaussian white noise with the indicated

17
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covariance parameter, where y denotes the composite vector [0, and where

F.G, 1,Q, S,Z, and A have the forms

F F 0]. [G], H[H:0,Q[ j

[s f ],Z=[Z], and A=[ A0 ]

for this partitioning of y. If R -t is also of order unity, the optimal control law
for this problem can be approximated up to terms which are asymptotically of
order h2 (see appendix for details), and this approximations retains this

accuracy as R- 0 if Q = 0 (Reference 10). Furthermore, the Taylor-series
truncations in the problem formulation don't justify order-h 2 accuracy in the
solution anyway.

For nonzero Q, however, the analysis of the preceding sections shows

that if R = R/m 2 , and R, F, and H have the properties assumed there with
h 2m6t i / 2  1, then the optimal control law can also have another component
(Equation 30) of order h2 m2 t51 2. This latter component can be large compared
to h2 under these conditions and is therefore significant at the level of
accuracy of the problem formulation. In this case, this extra control
component can simply be added to the (order-h) control law approximation of
the appendix to approximate the optimal control law to order h2 m 2T5/2
Absorbing h and m into the definitions of r and R in earlier sections allows
this added control component to be expressed as

Tl = B'tr{[FH T R-I HPY - (AG)] M), (37)

where F is the p x m x n three-way matrix such that

n = dim(x)

ri,jk = j,k.,i+n m = dim(u)
p = dim(0)

where P(t). Y(t), and A are the solutions of

T T- T1P =Fl? + PFT+ Q-PH H P; HP(t 0 ) = var(x 0 ) (38)

18
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-Y =Y(F - PHTR IH) + (F T+HT R -IHP)Y + (SG + Z)B-I(ZT + GT S);
Y(tf) = 0 (39)

-A=A[F- GB (ZT + G TS)] + (FT+H TR - ) A +

YPH TR HFB- I (ZT + GTS); A(tf) = 0, (40)

with S(t) as defined by Equation 21, and where M is generated by

= (F - PHTR IH) M - (LF)'BI(ZT + GTS)PHTR I(z - Hi);

M(t 0 ) = 0 (41)

with L denoting the conditional covariance of 0 (as computed in any of the
preceding approximations of the optimal perturbation control law).

This added control component has the basic form of an irregular dither

term that is produced as a linear combination of the outputs (M) of a high-
frequency linear system (Equation 41) whose input is the Kalman-filter

innovation variable (z - Hi). In specific cases, moreover, this dither can
become an even more significant component of the optimal law
approximation, the result of particular order-of-magnitude properties beyond
what was assumed in establishing the more general results above. A common
example is that of regulating the position of a scalar undamped second-order
system when only the position is measured and only the velocity is affected by
the plant noise. This means that

in the notation above. In that case, it can be shown that r = I/,"-" and that
optimal control law approximation of the preceding paragraph is actually
accurate except for terms of order h2 as long as mhr ,, 1. The dither term is
still of order h2 m2t5/2 in this case so it will even be large compared to h under
these conditions if m 1 /2 , h o m 3 /4. Thus, the initial parameter uncertainty
can be large enough in such a case without being too large to destroy the
formal validity of the result that the dither control is the next level of
asymptotic approximation to the optimal control law after the "linear-
quadratic-Gaussian" approximation.

Figure 1 shows the numerical significance of adding such a dither
control to an adaptive missile autopilot (attitude control law), which is an
example of this particular type of control problem with two parameters
altogether. These parameters approximate the effects of missile speed and
altitude. The details of this example are described in Reference 11 with the
unfortunate exception of an error in computing the dither control according
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to Equations 37 through 41 and the approximation of F [exp(Oi)] by expl&F (0i)]

instead of exp[, (0i) + -var(Oi) ]. Briefly, it is a case of planar motion, and the
objective is to make a missile's acceleration lateral to its flight path match an
arbitrary "commanded" value (which typically varies with time). This lateral
acceleration is produced primarily by the body lift that results from orienting
the missile at an angle to its flight path, and this orientation is controlled in
turn by tail fin deflections. The controller measures actual and commanded
lateral acceleration, and selects the current tail fin deflection. The
optimization criterion used for the control law is one for which the optimal
control makes the acceleration track the commanded value as a critically
damped second-order system under idealized conditions (missile dynamics obey
a simplified model, and parameter values are known precisely). Figure 1
shows the result of using the indicated control laws in a more realistic
computer simulation of the missile and aerodynamics. The commanded
acceleration in each case here is the indicated series of 1-sec steps. This is
followed closely under the nominal flight condition (Mach 2 at 20,000 ft), both
with and without the dither control. At Mach 1.5 and 60,000 ft., however,
adding the dither control caused the autopilot to adapt more quickly to this
nonnominal flight condition (i.e., to nonzero values of the parameters). The
parameter changes corresponding to this difference in flight condition are
actually far beyond what has been justified theoretically for using this dither
to approximate an optimal control law more accurately. Instead, they
correspond to prior parameter variances that, to test the robustness of this
approximation, were made as large as would allow the autopilot response to
remain empirically reasonable at the nominal flight conditions.
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FIGURE 1. Autopilot Response.
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Append ix

CONTROL LAW DETAILS

The order-h approximation of the optimal control law for Equations 34
through 36 was developed for the most pant in Reference 10. Includ ing the
rcmai-;ng tcrms in that development shows that this approximation in the
notation of Equations 34 through 36 is

u= -13-(ZT+GTS)y + B- tr{[2(SG+Z)B 4 'IF -r-eS

-Se) T_(SG-Z) B -1EB -1(ZT + GTS) + (IG) " lyy

-B1{c+G6T ~+tr[TP +(S + yy)(P+ ) + pH TR I PY),

where y and P are generated from the incoming measurements z by

- - T- tr~T +)
y = (F +8u)y +(G +8 y)u +t[~ ~

+ P(fl + 2HKIu + 24D )T R- -1 (z) Y(to) = [x(to)I]

and

- TP=(F +2A y + 28u)P + P(F +2A y + 28u) +Q

+2[AH T+ (P4)P)]R 1l(z - P(t 0) [varfx(to) 1 0
=L 0 var(O)]

and where

z =Hy + tr[ 4D(y y + P)]

and A(t), S(t), Y(t). 11(t), and 0(t) are the solutions of the differential equation
system

VFV + VF +Q - VH~f R- H; V(t0 ) = P,)
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A='+r +r -=(F -vH R 1-)A +VAV -(Vd4V)R- HV; A(t) =0

S* - T -1

-SSFF +A-(SG +Z) B (Z +0 IS); S(tf) =S

-Y =Y(F -VH TR- I) + (F T- H TR- I HV)Y +(SG +Z) B I(Z T+0 65); Y(tf) o

[(G+Z) -I B-I -T -T I1-T -T

-- HZ- (SGZ)B~B'Z +G S)1- (Z +G0S)

'- IT T

-S B- (Z + G S) - (SG +Z)B 8 e' S-T A

+(S + )B-(Y+ Y )B- (Z T+0 G5 ); FI(tf) =Tif

J- (SG +Z)B G ]o - (SC +Z)B- (c + tr[TV
T -T1-- T1-I T+(S + Y)(Vo + 0 V) - V(QTH R H-1+ H R M9K )VY]}I

+S tr(VA) + tr[Vl + VH R HNrl + (S + Y)(VA + A V)

-V(I]Ri 4" + DR- H)PVYI; 0(tf) = trtrlfV(tf)].
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